
Java Coding – OOP Part 2
To object or not…

Copyright © 2014 by John Wiley & Sons. All rights reserved. 2

Object References

 An object variable is a variable whose type is a class

• Does not actually hold an object.

• Holds the memory location of an object

Figure 15 An Object Variable Containing an Object

Reference

Copyright © 2014 by John Wiley & Sons. All rights reserved. 3

Object References

 Object reference: describes the location of an object

 After this statement:

Rectangle box = new Rectangle(5, 10, 20, 30);

• Variable box refers to the Rectangle object returned by the new

operator

• The box variable does not contain the object. It refers to the

object.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 4

Object References

 Multiple object variables can refer to the same object:

Rectangle box = new Rectangle(5, 10, 20, 30);

Rectangle box2 = box;

Figure 16 Two Object Variables Referring to the Same

Object

Copyright © 2014 by John Wiley & Sons. All rights reserved. 5

Copying Object References

 When you copy an object reference

• both the original and the copy are references to the same object

Rectangle box = new Rectangle(5, 10, 20, 30);

Rectangle box2 = box;

box2.translate(15, 25);

Figure 19 Copying Object References

Same or Different? (1)

• Comparing objects

Title B.R.
Artist Queen
Date 1976
Length 3:50

myCd
{CD}

Title B.R.
Artist Queen
Date 1976
Length 3:50yourQCd

{CD}

Title Best of
Artist Genesis
Date 1983
Length 2:40yourCd

{CD}

if (myCd == yourCd)

System.out.println(“Same”);

else

System.out.println(“Different”);

if (myCd == yourQCd)

System.out.println(“Same”);

else

System.out.println(“Different”);

myQCd
{CD}

Same or Different? (1)

• Comparing objects

Title B.R.
Artist Queen
Date 1976
Length 3:50

myCd
{CD} Title B.R.

Artist Queen
Date 1976
Length 3:50yourQCd

{CD}

Title Best of
Artist Genesis
Date 1983
Length 2:40yourCd

{CD}

myQCd
{CD}

• “==“ is comparing references, not the object properties

• “==“ says whether the references refer to the same individual object or to

two distinct objects

• Only “myCd == myQCd” would give true

Same or Different? (2)

Define an “equals” method to compare objects

• Can write an equals method in CD class that compares

CD’s by content, not reference

• “myCd.equals(myCd)” would give true!

• Write such a method

• You could name the method anything you want

• “equals” is the convention Java uses… so follow it!

Same or Different? (2)

• Define an “equals” method

Title B.R.
Artist Queen
Date 1976
Length 3:50

myCd
{CD}

Title B.R.
Artist Queen
Date 1976
Length 3:50yourQCd

{CD}

Title Best of
Artist Genesis
Date 1983
Length 2:40yourCd

{CD}

if (myCd.equals(yourCd))

System.out.println(“Same”);

else

System.out.println(“Different”);

if (myCd.equals(yourQCd))

System.out.println(“Same”);

else

System.out.println(“Different”);

myQCd
{CD}

Copying

• copying has different semantics for primitive and object type data

int i, j;

i = 5;

j = i;

i++;

Sys… (i, j);

Person me, x;

me = new Person(…);

x = me;

me.setComments(“nice!”);

Sys… (me.getComments()

+ x.getComments(),);

Different
Same!

Copy vs. Clone

Title B.R.
Artist Queen
Date 1976
Length 3:50

Title B.R.
Artist Queen
Date 1976
Length 3:50

myCd
{CD}

yourQCd
{CD}

favouriteCd
{CD}

favouriteCd = myCd; yourQCd = myCd.clone();

// inside the CD class write a clone method

public CD clone(){

return new CD(title,artist,date,length);}

Copy vs. Clone

• Copying only copies the reference, making the copy refer to the same
object

• Clone involves creating an entirely new object and copying all the
properties of the first into it

• Java automatically provides a clone method for all objects

• BUT be careful, it performs a “shallow” copy which is fine for primitive types

• Not necessarily for embedded objects (which end up shared by both the
original and clone objects!)

• Doing clone() properly is a problem since it requires implementing clonable &
handling exceptions!)

• Use copy constructors as an alternative

• For example, yourQCd = new CD(myCd);

Parameter Passing (1)

• Primitive types…

public int xyz(int i) {

i++;

return i;

}

int a, b;

a = 5;

b = xyz(a);

Sys… (a, b);

5a

b

main

main

5 i

xyz

6

6

Parameter Passing (2)

• Object types…

public Person xyz(Person x) {

x.setComments(“Nice”);

return x;

}

Person a, b;

a = new Person(“David” …);

b = xyz(a);

Sys… (a.getComments()

+ b.getComments());

a

b

main

main

x

xyz

David
22

1000
“”Nice

NOTICE – changing the properties of the object referred to by the formal

parameter in the method DOES change the properties of the corresponding

(actual parameter’s) object in the main method

Parameter Passing (3)

• Object types…

public Person xyz(Person x) {

x = new Person(“Derya” …);

x.setComments(“Nice);

return x;

}

Person a, b;

a = new Person(“David” …);

b = xyz(a);

Sys… (a.getComments()

+ b.getComments());

a

b

main

main

x

xyz

David
22

1000
“”

Derya
18
500
“”Nice

NOTICE – changing the reference of the formal parameter in the method

DOES NOT change the corresponding actual parameter’s reference in

the main method.

All Objects…

• automatically have
• boolean equals(Object)

• Object clone()

• String toString()

• BUT
• they may not do what you would like/expect, so implement yourself!

Code using
these

methods will
compile & run
even if your

class does not
define them!

equals() defaults to “==“

clone() defaults to “shallow copy”

toString() defaults to “classname@hashvalue”

Lost objects & null

• Java collects its garbage!

Title B.R.
Artist Queen
Date 1976
Length 3:50

Title Best of
Artist Genesis
Date 1983
Length 2:40

myCd
{CD}

yourCd
{CD}

myCd = yourCd;

aCd
{CD}

aCd = null;

Lost objects & null

• What happens when “myCd = yourCd;” is executed?

• Variable only refers to one object at a time.

• So my Queen CD is lost

• Objects having no references to them cannot be used!

• They are effectively garbage

• Java automatically collects such garbage allowing the
space to be reused/recycled for other objects

Lost objects & null

• “null” is a special value that can only be applied to references

• Can compare references to null

• e.g. if (aCd == null) or if (myCd != null)

• Cannot compare references using <, >, <=, >=

• (or add, subtract or multiply them!)

• Attempting to access the properties or methods of an object that
doesn’t exist because the reference is null, results in a
“nullPointerException”

Static vs. Instance

Static vs. instance Variables

• “count” as an instance variable
-- each instance (object) has count variable

name
age
salary
comments

Person

instance

0
David

22
2000

“Quiet”

0
Derya

18
500

“Nice”

0
Gunes

21
1500

“Sunny”

0
Ayse
25

1000
“Happy”

count

a b c d

23

c.count++;
c.count++;
a.count = 3;

Static vs. instance Variables

• “count” as a static variable
-- only one count variable, associated with class

name
age
salary
comments

Person

static 01234

instance

David
22

2000
“Quiet”

Derya
18
500

“Nice”

Gunes
21

1500
“Sunny”

Ayse
25

1000
“Happy”

count

a b c d

initialise count
to zero, then
increment it

in constructor

also known as
“class variables”

Static vs. instance Variables

• Each instance of the class, i.e. each individual object, has its own values for each
instance variable

• But there is only ever one copy of a static variable (also called a class variable)

• Static data accessible via classname.variablename (and object.variablename)

• Instance data only accessible via object.variablename syntax

• Static data can be accessed even if there are no instances of the class.

• Same goes for static methods, e.g. a getCount() method here or the main method!

• Static methods can only refer to static data and data defined locally in
method. Why?

• Static data used

• for constant definitions (outside method but in class) –never changes so only
need one copy!

• for singletons (classes which allow one and only one object to be created.)

Misc:

• Can combine, so static “nextID” gives next value to be assigned to
instance variable “personID”

• Constants often defined as static
hence saving space

public static final int PI = 3.142;

public static final String COMPANY = “Bilkent University”;

Static vs. instance Methods

• Classes can have both
static & instance methods.

• Static methods useful when
• accessing static variables

public static int getCount()

• object state is not needed
public static int getAge(day, month, year)

• Static methods
cannot access instance variables or methods

• Instance methods
can access static & instance, variables & methods

Singletons (design pattern)

• Problem: Ensure only a
single instance of a class is created.
(for database or network connections, etc.)

• Solution: Combine static variable,
private constructor & static method!

public class SingletonClass {

private static SingletonClass ourInstance = new SingletonClass();

private SingletonClass() {
}

public static SingletonClass getInstance() {
return singletonObj;

}
}

Singletons (design pattern)

• Implemented by creating a class with a method that creates
a new instance of the class if one does not exist

• If an instance already exists, it simply returns a reference to
that object

• To make sure that the object cannot be instantiated any
other way, the constructor is made private or protected

Singletons (design pattern)

public class ClassicSingleton {

private static ClassicSingleton instance = null;

protected ClassicSingleton() {

// Exists only to defeat instantiation.

}

public static ClassicSingleton getInstance() {

if(instance == null) {

instance = new ClassicSingleton();

}

return instance;

}

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 29

The this Reference

 Two types of inputs are passed when a method is called:

• The object on which you invoke the method

• The method arguments

 In the call momsSavings.deposit(500) the method

needs to know:

• The account object (momsSavings)

• The amount being deposited (500)

 The implicit parameter of a method is the object on

which the method is invoked.

 All other parameter variables are called explicit

parameters.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 30

The this Reference

 Look at this method:

public void deposit(double amount)

{

balance = balance + amount;

}

• amount is the explicit parameter

• The implicit parameter(momSavings) is not seen

• balance means momSavings.balance

 When you refer to an instance variable inside a method, it

means the instance variable of the implicit parameter.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 31

The this Reference

 The this reference denotes the implicit parameter

balance = balance + amount;

actually means

this.balance = this.balance + amount;

 When you refer to an instance variable in a method, the

compiler automatically applies it to the this reference.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

The this Reference

 Some programmers feel that inserting the this reference

before every instance variable reference makes the code

clearer:

public BankAccount(double initialBalance)

{

this.balance = initialBalance;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 33

The this Reference

 The this reference can be used to distinguish between

instance variables and local or parameter variables:

public BankAccount(double balance)

{

this.balance = balance;

}

 A local variable shadows an instance variable with the

same name.

• You can access the instance variable name through the this

reference.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 34

The this Reference

 A method call without an implicit parameter is applied to

the same object.

 Example:

public class BankAccount

{

. . .

public void monthlyFee()

{

withdraw(10); // Withdraw $10 from this account

}

}

 The implicit parameter of the withdraw method is the

(invisible) implicit parameter of the monthlyFee method

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

The this Reference

 You can use the this reference to make the method

easier to read:

public class BankAccount

{

. . .

public void monthlyFee()

{

this.withdraw(10); // Withdraw $10 from this account

}

}

